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Abstract 

The report describes the Matlab software that we developed for modelling brushstroke characteristics. We 
developed a set of functions, including implementations of structure tensor for brushstroke segmentation, 
texton histogram extractor for measuring high-level brushstroke characteristics, deep autoencoder for the 
automatic identification of high-level features in brushstroke texture, and large-margin triplet learning 
(LMTL) that learns human similarity judgments. In addition to a description of the software, the report 
describes the results of tests we performed on paintings. These results show that (1) high level 
characteristics of brushstrokes provide important clues to classify the painting styles, (2) deep learning of 
representations improves the feature quality, and (3) metric learning on human judgements provides a 
better modelling of brushstroke characteristics. 
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Executive summary  

The deliverable describes the software tools that were developed for the representation and modelling of 
brushstroke characteristics. The developed software is included in the INSIDDE Terahertz Image Processing 
Toolbox, which was developed as deliverable D3.2.1. Developed algorithms comprise the following 
elements: (1) segmentation and feature extraction techniques that can be used to identify and represent 
brushstroke characteristics; (2) machine learning techniques such as deep autoencoding that can be used 
for deep learning of feature representations, and large margin triplet learning that learns a metric on 
human judgements to provide a better modelling of brushstroke characteristics. 

In addition to a description of the software, the deliverable presents the results of tests that were 
performed with the various software components on samples paintings. In particular, we performed 
experiments in which we tried to segment brushstrokes and identify their orientations using a structure 
based approach. Although the THz spectrum was found to be uninformative for this task, our software 
performed successfully on 3D scan of a sample painting. 

In a next set of experiments, we trained supervised machine learning models (classifiers) to classify 
different types of painting styles based on brushstroke characteristics. To this end, we used a database of 
88 high-resolution digital reproductions of Van Gogh paintings, since THz scans of original paintings were 
not available. In our experiments, texton histograms, deep learning of feature representations, and metric 
learning based on human judgements were assessed. First, we evaluated and consequently showed the 
informativeness of texton histograms to describe high level brushstroke characteristics. Then, we employed 
a deep learning module in this system and improved the quality of feature representations. In the final set 
of experiments, we questioned whether a better modelling of brushstrokes can be provided by learning a 
metric from human judgements. Our findings showed that, indeed, the learned metric can provide more 
robust classification of brushstroke characteristics. 

 





 Deliverable D3.2.1  

    INSIDDE (ICT-2011-9 600849) Page 7 of (29) 
 

Document Information 

IST Project 
Number 

FP7 - 600849 Acronym INSIDDE 

Full Title Integration of technological solutions for imaging, detection, and digitisation of 
hidden elements in artworks 

Project URL http:/ /www.insidde-fp7.eu/ 
Document URL  
EU Project Officer José María del Águila Gómez 

 
Deliverable Number D3.2.2 Title Software for modelling brushstroke 

characteristics 
Work Package  Number WP3 Title Automatic analysis of painting terahertz 

images 
 
Date of Delivery Contractual M27 Actual M27 
Status version 1.0 final  
Nature prototype   report  demonstrator   other  
Dissemination level public   restricted  

 
Authors (Partner) TU DELFT 

Responsible Author 
Name Hamdi Dibeklio�Rlu E-mail h.dibeklioglu@tudelft.nl 
Partner TU Delft Phone +31 15 2787243 

 
Abstract  
(for dissemination) 

The report describes the Matlab software that we developed for modelling 
brushstroke characteristics. We developed a set of functions, including 
implementations of structure tensor for brushstroke segmentation, texton 
histogram extractor for measuring high-level brushstroke characteristics, deep 
autoencoder for the automatic identification of high-level features in 
brushstroke texture, and large-margin triplet learning (LMTL) that learns 
human similarity judgments. In addition to a description of the software, the 
report describes the results of tests we performed on paintings. These results 
show that (1) high level characteristics of brushstrokes provide important cues 
to classify the painting styles, (2) deep learning of representations improves 
the feature quality, and (3) metric learning on human judgements provides a 
better modelling of brushstroke characteristics. 

Keywords Brushstroke characteristics, segmentation, deep learning, metric learning, 
texton histograms, structure tensor, large margin triplet learning, deep 
autoencoding. 

 
Version Log 
Issue Date Rev. No. Author Change 
25 March 2015 0.1 Hamdi Dibeklio�Rlu First version of the deliverable 
26 March 2015 0.2 Javier Gutiérrez Meana Minor modifications 
27 March 2015 0.3 Hamdi �� �]�����l�o�]�}�R�o�µ Second version 
27 March 2015 1.0 Javier Gutiérrez Meana Final version 
    

 

http://www.insidde-fp7.eu/
mailto:h.dibeklioglu@tudelft.nl




 Deliverable D3.2.1  

    INSIDDE (ICT-2011-9 600849) Page 9 of (29) 
 

Table of Contents 

Executive summary ...................................................................................................................................... 5 
Document Information ................................................................................................................................ 7 
Table of Contents ........................................................................................................................................ 9 
List of figures ..............................................................................................................................................11 
Abbreviations .............................................................................................................................................13 
1 Introduction.........................................................................................................................................15 
2 Brushstroke segmentation and feature extraction ...............................................................................17 

2.1 Structure Tensor ...........................................................................................................................17 

2.2 Texton Histograms ........................................................................................................................17 

3 Machine Learning ................................................................................................................................19 
3.1 Deep Learning of Representations ................................................................................................19 

3.2 Metric learning from human judgements ......................................................................................19 

4 Experiments and results .......................................................................................................................20 
4.1 Brushstroke segmentation ............................................................................................................20 

4.2 Texton histograms for modelling brushstroke characteristics ........................................................22 

4.3 Deep Learning of Representations ................................................................................................23 

4.4 Metric learning from human judgements ......................................................................................23 

5 Conclusions..........................................................................................................................................25 
References ..................................................................................................................................................27 
Annex: Dependencies .................................................................................................................................29 
 

 

 





 Deliverable D3.2.1  

    INSIDDE (ICT-2011-9 600849) Page 11 of (29) 
 

List of figures 

Figure 1: Image of the painting (left), ambient occlusion rendering (middle) and depth map of its 3D scan 
(right). Depth map shows the z-coordinates of the surface, where brighter values indicate higher 
values. .................................................................................................................................................20 

Figure 2: (a) Raw gradient directions, (b) filtered gradient directions based on coherence, and (c) filtered 
gradient directions based on coherence and first eigenvalue. Colormap shows angle of the related 
direction. Full black points show eliminated values (NaN). ...................................................................20 

Figure 3: (a) Image of the sample painting, (b) the visualisation of its terahertz spectrums obtained via a t-
SNE analysis, (c) mean spectrum, and (d) deviation of the spectrum. In (b) and in (c), similar colours 
indicate similar terahertz response spectrums. ....................................................................................21 

 

 





 Deliverable D3.2.1  

    INSIDDE (ICT-2011-9 600849) Page 13 of (29) 
 

Abbreviations 

A list of abbreviations in alphabetical order is provided below: 

LMTL: Large-Margin Triplet Learning 

THz: Terahertz 

t-SNE: t-Distributed Stochastic Neighbour Embedding 
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1 Introduction 

Deliverable D3.2.2 comprises the development of software tools that can be used to analyse and model 
brushstroke characteristics of paintings. The developed algorithms include methods to segment and 
identify brushstrokes, texton histograms extractor to describe high level characteristics of the brushstrokes, 
deep autoencoding for learning feature representations, and large margin triplet learning method that 
learns a metric on human judgements for better modelling of brushstroke characteristics. Implemented 
software tools can be used for texture and depth scans of paintings as well as THz images.  

The outline of this deliverable is as follows. This report starts by describing the algorithms we developed in 
detail. In Section 2, techniques for brushstroke segmentation and feature extraction are described. 
Developed machine learning algorithms are detailed in Section 3. Section 4 presents the experimental 
results, and followed by the conclusions of our work in Section 5. 
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2 Brushstroke segmentation and feature extraction 

In order to analyse and model brushstroke characteristics, an informative set of features has to be 
extracted. For this task, the geometric representation or appearance of brushstrokes can be used. 
Therefore, we implemented a structure tensor approach for segmenting brushstrokes, and we developed 
routines to extract texton histograms that describe the appearance of brushstrokes. In this section, the 
structure tensor approach and texton histograms are described. 

 

2.1 Structure Tensor 

Brushstrokes need to be segmented to compute geometric features. To this end, we implemented a 
structure tensor algorithm that reveals the magnitude and orientation of brushstrokes. 
The structure tensor is a matrix derived from the gradient of a function. From the perspective of image 
processing and computer vision, the structure tensor describes the common directions of the gradient in a 
specified neighbourhood of a point (pixel), and the coherence level of those directions [1], where the 
computed gradients indicate brushstrokes in our task. Computed coherence level of gradient directions, 
and eigenvalues of the structure tensor can be used to filter slight brushstrokes and uncertain stroke 
directions.  

The structure tensor matrix �5 can be defined in the following form: 

�5= �H
�+�ë�6 �+�ë�+�ì

�+�ë�+�ì �+�ì�6
�I��, 

where �+�ë and �+�ì  denote the partial image derivatives in the x and y direction, respectively. Such derivatives 
can be calculated using directional filter convolutions on the image. Then, the common orientations �4 of 
the gradient can be computed as follows:  

�4= tan�?�5
�+�ë�+�ì

�@+ §�+�+�ë�+�ì �+
�6

+ |�@| �6

��,���� 

where 

�@= ��
�+�ì�6 F �+�ë�6

2
. 

Afterwards, coherence (�%) of the computed gradient orientations �4 can be calculated as per the following 
equation: 

�%= l
�ã�5 F�ã�6
�ã�5+ �ã�6

p
�6

, 

 where �ã�5and �ã�6 show the first and second eigenvalues of tensor matrix �5, respectively.  

 

2.2 Texton Histograms 

To describe appearance of brushstroke patterns, we implemented a texton-based method that builds a 
codebook of textons, i.e., representative patches of a collection of paintings and represents paintings in 
terms of texton histograms. A texton is the fundamental building block of texture, and brushstroke texture 
can be defined as a superposition of brushstroke textons (note that textons are not identical to a 
brushstroke). To this end, first a codebook is generated by prototypical brushstroke textons of a collection 
of painting scans. Then, each painting can be described as the texton distribution measured by means of a 
texton histogram.  
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To construct the texton codebook, 1000 square image patches are selected from random locations of each 
painting in the collection. Then, prototypical patches are identified by applying k-means clustering to the 
full set of randomly selected patches. The texton codebook is then formed by the resulting cluster centres. 
Using the defined codebook, each painting can be represented by means of a texton histogram. The height 
of each bin in the texton histogram for a painting represents the frequency of occurrence of the associated 
codebook texton in the painting. A sliding window is employed to create the histograms. While the sliding 
window moves over all locations in the painting, contents of each window location are compared to all 
codebook textons and the most similar codebook texton (e.g., in the Euclidean sense) is used to describe 
the related texton. To provide a descriptor that is not affected by the size of the paintings, the texton 
histograms are normalised to sum up to 1. For a detailed visual analysis, a variety of different scales is 
usually examined by experts. To this end, in computer analysis of paintings, we compute the histograms 
using textons of six different sizes. Resulting histograms are concatenated to form a feature vector. 
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3 Machine Learning 

3.1 Deep Learning of Representations 

For a decent classification performance, modelling algorithms require relevant and mathematically 
convenient data. Yet, extracted features for representing a dataset may be complex and redundant due to 
several reasons such as sensor noise or correlated measurements. To cope with high dimensionality and 
redundancy of data, feature representations can be learned using deep architectures. Such deep learners 
can provide a compact and informative set of descriptors in an unsupervised manner for 
modelling/classification tasks. To this end, we implemented functions for deep representation learning 
using a deep feedforward autoencoder [2] that learns a transformation of raw features to an effective 
representation. 

A deep autoencoder can be described as a neural network with multiple hidden layers. Such a network is 
trained to reconstruct its inputs, where hidden layers learn efficient representations of the inputs. In our 
implementation, the deep autoencoder is pre-trained using stacked denoising autoencoders [3]. Each 
hidden layer of the deep autoencoder is pre-trained using a denoising autoencoder (single hidden layer), 
which maps a corrupted version � ä of input � �Ð�9�ã to a latent representation �! �Ð�9�ä, then maps back to 
the original space �" �Ð�9�ã��; by minimizing the reconstruction error �!� F �"�!
Û, the denoising autoencoder is 
trained. By this way, the first hidden layer is trained to reconstruct the input data, then each of the hidden 
layers are trained to reconstruct the states of the layer below, respectively. When the pre-training is 
completed, the entire deep autoencoder is trained to fine-tune all the parameters together.  

 

3.2 Metric learning from human judgements 

In order to learn a metric on a feature space based on human similarity judgements of the form: “A is more 
similar to B than to C”, we developed a new model, called large-margin triplet learning (LMTL). In task 3.3.2 
“Modelling human perceptual similarity”, we obtained human judgements on a set of paintings in order to 
obtain information on human perceptual similarity of brushstrokes. Obtained judgements are of the triplet 
form above, because such similarity triplets are generally considered to be much more reliable than, for 
instance, pairwise similarity measures on a Likert scale.  

Specifically, we developed and implemented the following model: 

 

Herein, P is projection matrix that is applied on the extracted (brushstroke) features; in other words, it is 
encoding (potentially low-rank) Mahalanobis metric M that operates on the feature space. The vector w 
encodes a binary classification vector that is used to classify an example in the new space, and L(.) is a 
classification loss function. In our implementation, user can choose the type of loss function, where the 
quadratic loss, hinge loss, logistic loss, and exponential loss are provided as the options for loss function. 
The constraint set T encodes the constraints of the form “i is more like j than like k”. In practice, our 
implementation does not strictly enforce these constraints, but introduces a slack variable for each 
constraint that measures the degree to which a constraint is violated – the sum of all slack variables is 
added as a penalty term to the loss.  
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4 Experiments and results 

In order to evaluate the implemented methods, we performed experiments on brushstroke segmentation, 
feature representation learning and metric learning from human judgements. Each of the experiments are 
described and results are given in this section. 

 

4.1 Brushstroke segmentation 

First, we focused on revealing brushstrokes using 3D scan of a sample painting. For our experiments, we 
used the replica of the “still life” painting, which was created specifically for such tasks. 3D scan was 
acquired by the structure light based scanner developed in Task T3.1 “Digitisation of paintings for feature 
extraction”. The painting, ambient occlusion rendering (middle) and depth map of its 3D scan are shown in 
Figure 1. After aligning the canvas surface onto a planar surface, magnitude and orientation of brushstrokes 
are estimated based on structure tensor approach.  

 

     

Figure 1: Image of the painting (left), ambient occlusion rendering (middle) and depth map of its 3D scan 
(right). Depth map shows the z-coordinates of the surface, where brighter values indicate higher values. 

     

    

(a) (b) (c) 

Figure 2: (a) Raw gradient directions, (b) filtered gradient directions based on coherence, and (c) filtered 
gradient directions based on coherence and first eigenvalue. Colormap shows angle of the related 

direction. Full black points show eliminated values (NaN).  

 

As shown in Figure 2(a), estimated gradient directions represent noisy patterns. To able to provide a more 
reliable brushstroke segmentation, direction maps are filtered based on coherence level and presented in 
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Figure 2(b). In order to eliminate slight brushstrokes, a second filter introduced based on corresponding 
eigenvalues. The resulting map, shown in Figure 2(c), clearly represents the strong brushstrokes and their 
directions. Such maps can be used for modelling of brushstrokes, for instance, for generating orientation or 
edge-hinge histograms that may be specific to a painter.  

As the next step, we evaluated the usability of THz images for brushstroke segmentation. To this end, we 
performed a t-SNE analysis in which we reduced the dimensionality of the spectrums to three dimensions, 
which were in turn converted into an RGB colour code that is used to determine the colour of the 
corresponding pixel. Sample painting and the resulting t-SNE image are shown in Figure 3. t-SNE [4] was 
developed specifically for these types of analyses. In this experiment we used an improved version of the 
algorithm, called Barnes-Hut-SNE, which was recently developed by the research team [5]. For further 
analysis of the sample THz image, we also computed mean and variance of THz spectrum for each point on 
the sample painting. Mean and variance images are given in Figure 3(c), and Figure 3(d), respectively. 

 

 (a) 

 (b) 

 (c) 

 (d) 

Figure 3: (a) Image of the sample painting, (b) the visualisation of its terahertz spectrums obtained via a 
t-SNE analysis, (c) mean spectrum, and (d) deviation of the spectrum. In (b) and in (c), similar colours 

indicate similar terahertz response spectrums.  
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As shown in Figure 3, brushstroke patterns are visible in colour image of the sample painting. However, THz 
spectrum does not provide sufficient information about the brushstrokes. This may be explained by the 
thick surface of background paint and the penetrating behaviour of THz scanning. Since manual annotations 
of brushstrokes were not available, we were unable to develop supervised machine learning algorithms to 
identify brushstrokes based on THz spectrum.  

 

4.2 Texton histograms for modelling brushstroke characteristics 

In this section, we evaluated the informativeness of texton histograms for modelling brushstroke 
characteristics. We used a database of 88 high-resolution digital reproductions of Van Gogh paintings in our 
experiments, since THz scans of original paintings were not available. The paintings were normalised in 
such a way that a square inch of the painting is represented by 196.3 × 196.3 pixels. Each painting is 
labelled by their creation date (ranging from 1884 to 1890) and creation place.  

We split the database into two main periods in Van Gogh's oeuvre: the Dutch period (1883-1886) and the 
French period (1886-1890). There are 13 paintings from the Dutch period, and 75 paintings from the French 
period. Then, texton histograms were extracted for textons of six different sizes: 25×25, 35×35, 45×45, 
55×55, 65×65, and 75×75 pixels. The texton codebook of each texton size contained 500 textons. Each of 
the six texton histograms and their combination were modelled by k-Nearest Neighbour (k-NN) classifier to 
distinguish between the Dutch period paintings and French period paintings. 

Due to the limited size of the database, we train and test our system using 5-fold cross validation. For each 
fold, 10-11 paintings from the Dutch period and 15 paintings from the French period were used to train the 
classifier. Number of neighbours for k-NN was determined based on a cross validation within training set. 
The remaining samples were used for the test. Experiment was repeated 10 times using randomly selected 
training samples. Average rate of correct classification for each class using different texton histograms are 
given in Table 1. 

 

Table 1: Average accuracy of classifying Van Gogh paintings from Dutch and French periods, using 
different texton histograms.  

Feature 
Accuracy 

Dutch period French period Average 

25×25 texton histograms 0.1846 0.9770     0.5808 

35×35 texton histograms 0.2000     0.9757 0.5878 

45×45 texton histograms 0.1923     0.9740     0.5831 

55×55 texton histograms 0.2077     0.9707     0.5892 

65×65 texton histograms 0.1923     0.9717     0.5820 

75×75 texton histograms 0.2000     0.9713     0.5857 

Combined texton histograms 0.5538     0.9293     0.7415 

 

As shown in Table 1, while the use of individual texton sizes cannot provide more than 20.77% correct 
classification for the Dutch period, the combined use of all texton histograms reaches an accuracy of 
55.38%. The accuracy of identifying the paintings from French period ranges between 97.70% and 92.93% 
by using different texton sizes. These results confirm the informativeness of multi-scale (combined) texton 
histograms for modelling brushstroke characteristics. 
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4.3 Deep Learning of Representations 

A compact set of more discriminative features can be learned using deep architectures. To assess the 
efficiency of deep learning of representations, we tested our Dutch period versus French period classifier 
using a deep autoencoder. Combined texton histograms (500×6=3000 dimensional) were used as the input 
of deep autoencoder. The same experimental protocols used in Section 4.2 were employed in these 
experiments. Average rate of correct classification for each class using different encoding types are given in 
Table 2. 

 

Table 2: Average accuracy of classifying Van Gogh paintings from Dutch and French periods, using 
different deep autoencoding architectures. 

Encoding Layers 
Accuracy 

Dutch period French period Average 

None 0.5538 0.9293 0.7415 

50 0.6154 0.9240 0.7697 

500-50 0.6023 0.9470 0.7746 

1500-50 0.5615 0.9577 0.7596 

500-100-50 0.3154 0.9727 0.6441 

1500-100-50 0.3154 0.9720 0.6437 

1500-500-50 0.2077 0.9770 0.5923 

 

As shown in Table 2, the highest accuracy is reached by using two-layer “500-50” encoding. Even the 
dimensionality of features is reduced to 50-D, the learned representation provides approximately 2% 
higher accuracy than using raw texton histograms (3000-D). As shown, using more than two layers 
decreases the correct classification rates. This can be explained by the fact that deep autoencoders require 
sufficiently large datasets for efficient learning. 

 

4.4 Metric learning from human judgements 

In the last set of experiments, we evaluated how a learned metric on a feature space based on human 
similarity judgements, would fare in classification tasks. To obtain information on human perceptual 
similarity of brushstrokes, we collected human judgements on the Van Gogh database we used in Section 
4.2 and in Section 4.3. Obtained judgements are of the triplet form as: “A is more similar to B than to C”. 
During the collection of the human judgements, participants were shown one reference and two 
comparison paintings, and they were asked the question of “brushstroke style of reference paintings is 
more similar to which of the comparison paintings?”. Approximately 5000 randomly generated painting 
triplets were rated by 12 subjects in total. 

Collected perceptual annotations, and the period labels (Dutch/French) of paintings were used in large-
margin triplet learning (LMTL). The learned representation of texton histograms by two-layer “500-50” 
encoding, were employed as input features. The quadratic loss function was chosen for the LMTL 
algorithm. The projected features into the learned metric space were used for k-NN classification of Dutch 
and French period paintings. The same experimental protocols used in Section 4.2 and in Section 4.3 were 
employed in these experiments. 
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In practice, our implementation does not strictly enforce these constraints, but introduces a slack variable 
for each constraint that measures the degree to which a constraint is violated. We use different values for 
this slack variable µ in our experiments. µ enables µ×100% violation for the period labels, and (1-µ)×100% 
violation for the judgement triplets. 

  

Table 3: Average accuracy of classifying Van Gogh paintings from Dutch and French periods, using 
different µ values for LMTL. 

Slack variable (µ) 
Accuracy 

Dutch period French period Average 

No LMTL 0.6023 0.9470 0.7746 

0.0 0.6077 0.8940 0.7509 

0.5 0.7000 0.8210 0.7605 

1.0 0.7000 0.8157 0.7578 

 

As shown in Table 1, applying LMTL on deeply encoded features improves the classification accuracy of 
Dutch period in comparison to using deeply encoded features, solely. Although, LMTL causes a decrease 
(1.4-2.4%) in the average correct classification rates, it provides an accuracy improvement of approximately 
10% for the paintings from French period. By this way, system performs more fairly for both classes. Results 
of using different µ values show the importance of combined optimisation of the metric using period labels 
and judgement triplets. Enabling 50% violation for both period labels and judgement triplets yields the 
most accurate setup for LMTL with an average accuracy of 76% .  
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5 Conclusions 

The deliverable has described a range of software algorithms for segmentation, representation, and, 
modelling characteristics of brushstrokes. Algorithms were implemented in Matlab and included in the 
toolbox developed as the earlier deliverable. Updated toolbox is being made publicly available via Matlab 
Central1. 

Developed algorithms were tested on sample paintings for efficiency assessment. First, structure tensor 
based brush segmentation approach was tested on 3D scan of a sample painting. The results show that the 
developed approach can deal with noise, successfully segment the brushstrokes and provide the 
orientations of brushstokes. Then, we assessed the informativeness of THz images for brushstoke analysis. 
Efforts to identify and segment brushstrokes in the terahertz scans were hitherto unsuccessful. Our visual 
analyses show that THz spectrum of the sample painting does not include sufficient amount of information 
for this task. 

A second set of experiments was performed to evaluate the discrimination power of texton histograms in 
classification tasks. Since THz scans of original paintings were not available yet, we used a collection of Van 
Gogh paintings to classify them into the Dutch and French period paintings in his oeuvre. Results of these 
experiments show that the texton histograms can successfully describe brushstroke patterns. Next, we 
employed a deep learning module in this system to improve the feature representation. Using a two 
layered deep autoencoder for representation learning increased the classification accuracy of the system 
by approximately 3% (absolute). 

In the final set of experiments, we questioned whether a better modelling of brushstrokes can be provided 
by learning a metric from human judgements. To this end, we collected human judgements on brushstroke 
style for approximately 5000 triplets of paints. A metric was learned using these judgements and employed 
in our painting classification system. Although, the learned metric slightly decreased the average correct 
classification rates, the accuracy for the paintings from Dutch period was improved significantly.  

 

                                                   
1 [Online] Available: http:/ /www.mathworks.com/matlabcentral/ fileexchange/49437 
 

http://www.mathworks.com/matlabcentral/fileexchange/49437
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Annex: Dependencies 

The software we developed has a number of dependencies that need to be installed for the software to 
work. All dependencies are listed below: 

- A Matlab installation with the Image Processing Toolbox (tested on version R2013B) 

- The minFunc toolbox of Mark Schmidt (http:/ /www.di.ens.fr/~mschmidt/Software/minFunc.html) 

- The Multicore toolbox of Markus Buehren 
(http:/ /nl.mathworks.com/matlabcentral/ fileexchange/13775-multicore-parallel-processing-on-
multiple-cores) 

- The convolve2 and exindex functions of David Young 

- The apcluster and apclusterK functions of Brendan J. Frey and Delbert Dueck 

The two toolboxes should be downloaded and installed separately, and be added to the Matlab path. The 
four Matlab functions are included in the toolbox repository for convenience. 
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